Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The astronomical origins of the most energetic galactic cosmic rays and gamma rays are still uncertain. X-ray follow-up of candidate “PeVatrons”—systems producing cosmic rays with energies exceeding 1 PeV—can constrain their spatial origin, identify likely counterparts, and test particle emission models. Using ∼120 ks of XMM-Newton observations, we report the discovery of a candidate pulsar wind nebula, a possible counterpart for the LHAASO PeVatron J0343+5254u. This extended source has a power-law X-ray spectrum with spectral index ΓX = 1.9—softer at greater distance from the center—and asymmetric spatial extension out to . We conduct leptonic modeling of the X-ray and gamma-ray radiation from this complex system, showing that a fully leptonic model with elevated IR photon fields can explain the multiwavelength emission from this source, similar to other very high-energy pulsar wind nebulas; excess gamma-ray emissivity not explained by a leptonic model may be due to hadronic interactions in nearby molecular cloud regions, which might also produce detectable astroparticle flux.more » « lessFree, publicly-accessible full text available April 2, 2026
- 
            Abstract We report a new CO observation survey of LHAASO J0341+5258, using the Nobeyama Radio Observatory 45-m telescope. LHAASO J0341+5258 is one of the unidentified ultra-high-energy (UHE;E> 100 TeV) gamma-ray sources detected by LHAASO. Our CO observations were conducted in 2024 February and March, with a total observation time of 36 hr, covering the LHAASO source (∼0 3–0 5 in radius) and its surrounding area (1° × 1 5). Within the LHAASO source extent, we identified five compact (<2 pc) molecular clouds at nearby distances (<1–4 kpc). These clouds can serve as proton–proton collision targets, producing hadronic gamma rays via neutral pion decays. Based on the hydrogen densities (700–5000 cm−3) estimated from our CO observations and archived Hidata from the Dominion Radio Astrophysical Observatory survey, we derive the total proton energy ofWp(E> 1 TeV) ∼ 1045erg to account for the gamma-ray flux. One of the molecular clouds appears to be likely associated with an asymptotic giant branch (AGB) star with an extended CO tail, which may indicate some particle acceleration activities. However, the estimated maximum particle energy below 100 TeV makes the AGB-like star unlikely to be a PeVatron site. We conclude that the UHE emission observed in LHAASO J0341+5258 could be due to hadronic interactions between the newly discovered molecular clouds and TeV–PeV protons originating from a distant SNR or due to leptonic emission from a pulsar wind nebula candidate, which is reported in our companion X-ray observation paper.more » « lessFree, publicly-accessible full text available April 2, 2026
- 
            Abstract Young supernova remnants (SNRs) are believed to be the origin of energetic cosmic rays (CRs) below the “knee” of their spectrum at ∼3 PeV (1015eV). Nevertheless, the precise location, duration, and operation of CR acceleration in young SNRs are open questions. Here, we report on multiepoch X-ray observations of Cassiopeia A (Cas A), a 350 yr old SNR, in the 15–50 keV band that probes the most energetic CR electrons. The observed X-ray flux decrease (15% ± 1% over 10 yr), contrary to the expected >90% decrease based on previous radio, X-ray, and gamma-ray observations, provides unambiguous evidence for CR electron acceleration operating in Cas A. A temporal model for the radio and X-ray data accounting for electron cooling and continuous injection finds that the freshly injected electron spectrum is significantly harder (exponential cutoff power-law indexq= 2.15), and its cutoff energy is much higher (Ecut = 36 TeV), than the relic electron spectrum (q = 2.44 ± 0.03,Ecut = 4 ± 1 TeV). Both electron spectra are naturally explained by the recently developed modified nonlinear diffusive shock acceleration (mNLDSA) mechanism. The CR protons producing the observed gamma rays are likely accelerated at the same location by the same mechanism as the injected electrons. The Cas A observations and spectral modeling represent the first time radio, X-ray, gamma-ray, and CR spectra have been self-consistently tied to a specific acceleration mechanism—mNLDSA—in a young SNR.more » « less
- 
            Abstract Pulsar halos are regions around middle-aged pulsars extending out to tens of parsecs. The large extent of the halos and well-defined central cosmic-ray accelerators make this new class of Galactic sources an ideal laboratory for studying cosmic-ray transport. LHAASO J0621+3755 is a candidate pulsar halo associated with the middle-aged gamma-ray pulsar PSR J0622+3749. We observed LHAASO J0621+3755 with VERITAS and XMM-Newton in the TeV and X-ray bands, respectively. For this work, we developed a novel background estimation technique for imaging atmospheric Cherenkov telescope observations of such extended sources. No halo emission was detected with VERITAS (0.3–10 TeV) or XMM-Newton (2–7 keV) within 1∘and around PSR J0622+3749, respectively. Combined with the LHAASO Kilometer Square Array (KM2A) and Fermi-LAT data, VERITAS flux upper limits establish a spectral break at ∼1–10 TeV, a unique feature compared with Geminga, the most studied pulsar halo. We model the gamma-ray spectrum and LHAASO-KM2A surface brightness as inverse Compton emission and find suppressed diffusion around the pulsar, similar to Geminga. A smaller diffusion suppression zone and harder electron injection spectrum than Geminga are necessary to reproduce the spectral cutoff. A magnetic field ≤1μG is required by our XMM-Newton observation and synchrotron spectral modeling, consistent with Geminga. Our findings support slower diffusion and lower magnetic field around pulsar halos than the Galactic averages, hinting at magnetohydrodynamic turbulence around pulsars. Additionally, we report the detection of an X-ray point source spatially coincident with PSR J0622+3749, whose periodicity is consistent with the gamma-ray spin period of 333.2 ms. The soft spectrum of this source suggests a thermal origin.more » « lessFree, publicly-accessible full text available May 15, 2026
- 
            Abstract The X-ray binary SS 433, embedded in the W 50 nebula (or supernova remnant W 50), shows bipolar jets that are ejected with mildly relativistic velocities and which extend toward the east and west out to scales of tens of parsecs. Previous X-ray observations revealed twin lobes along the jet precession axis that contain compact bright knots dominated by synchrotron radiation, which provide evidence of electron acceleration in this system. Particle acceleration in this system is substantiated by the recently detected gamma rays with energies up to at least 25 TeV. To elucidate the origin of the knots and particle acceleration sites in SS 433/W 50 further, we report here on detailed, spatially resolved X-ray spectroscopy of its western lobe with Chandra. We detect synchrotron emission along the jet precession axis, as well as optically thin thermal emission that is more spatially extended. Between the two previously known knots, w1 and w2, we discover another synchrotron knot, which we call w1.5. We find no significant synchrotron emission between SS 433 and the innermost X-ray knot (w1), suggesting that electrons only begin to be accelerated at w1. The X-ray spectra become gradually steeper from w1 to w2, and then rapidly so immediately outside of w2. Through comparison with a model taking into account electron transport and cooling along the jet, this result indicates that the magnetic field in w2 is substantially enhanced, which also explains its brightness. We discuss possible origins of the enhanced magnetic field of w2 as well as scenarios to explain the other two knots.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
